Public Utilities Reports

PUR Guide 2012 Fully Updated Version

Available NOW!
PUR Guide

This comprehensive self-study certification course is designed to teach the novice or pro everything they need to understand and succeed in every phase of the public utilities business.

Order Now

Capturing Distributed Benefits

Factoring customer-owned generation into forecasting, planning, and operations.

Fortnightly Magazine - August 2012

summer generator output, and to inspect any historical data communications problems. Results were a steady output of 7 MW throughout the past two summers, with a minimal and controlled outage rate.

This analysis adequately assures that the generator can be counted on as a reliable load reduction, but it doesn’t fully solve the problem of availability, as there is no contractual agreement with the customer to generate when needed. To address this, utility distribution-system operating protocols are being developed for the future years in which the projected peak loads of the network are expected to exceed the summer substation capability for cases when the DG is out of service. The operating protocol adheres to second-contingency design criteria, i.e., continued ability to meet load under circumstances where the DG is out of service on a peak summer day with two substation transformers also out of service. This operating protocol will be implemented when the DG is unavailable on a peak day during first contingency, and will consist of load-relief measures not already counted, including customer appeals for load reduction, emergency demand response, voltage reduction, use of customers’ emergency generation, or use of company-owned emergency mobile generation. Under these operating scenarios Con Edison will continue to provide service to all of its network customers as well as backup or standby power to the DG customer.

Maximizing DG Benefits

As a first step, other cases where CHP is located in stressed networks with planned load relief are being considered for additional savings, as are future DG projects that will be located in these networks. The most logical next move is to take the same evolutionary step with DG that Con Edison took with EE when the Targeted DSM program was adopted. Currently DG installation locations are somewhat random, with projects siting wherever customers find them viable. Con Edison has no way of predicting with any specificity where or when a customer will choose DG. Using existing public incentives to target DG installations to areas of the system that could benefit from increased capacity will get more bang for the buck—a similar approach has already created Solar Empowerment Zones in Con Edison service territory, where public incentives for solar PV are increased in day-peaking networks with planned load relief. Additional opportunities include assessing the potential for central dispatch of DG and enhanced data management as smart distribution evolves; the incorporation of DG into independent-system-operator planning processes; and leveraging the legislated phase-out of #4 and #6 fuel oils.

Con Edison might pursue several possible approaches to increase the grid-benefit of DG while still maintaining substation design requirements. Under one, the utility could contract for a reduction in back-up service with DG customers. The electric distribution company’s contractual obligation to serve load would be reduced; if the customer’s DG unit was offline when this contracted amount was exceeded, the customer would have to reduce load in some manner or agree to endure a partial outage. This reduction in the actual obligated load also would allow the utility to extend the DG capacity benefit to additional portions of the