Public Utilities Reports

PUR Guide 2012 Fully Updated Version

Available NOW!
PUR Guide

This comprehensive self-study certification course is designed to teach the novice or pro everything they need to understand and succeed in every phase of the public utilities business.

Order Now

Battle of the Big Nukes

Why the Tennessee Valley Authority and Duke Energy chose Westinghouse’s nuclear power-plant design over GE’s.

Fortnightly Magazine - May 2007

It seems the rivalry that goes back to the “War of Currents” era in the late 1880s continues to play itself out over and over again between Edison’s General Electric and Westinghouse, even in the 21st century.

George Westinghouse and Thomas Edison became adversaries over Edison’s promotion of direct current (DC) for electric power distribution over the alternating current (AC) advocated by Westinghouse (now owned by Toshiba) and Nikola Tesla. Edison’s low-voltage distribution system using DC ultimately lost to AC.

Jack Bailey, vice president, nuclear generation, at Tennessee Valley Authority explains why his organization finally decided on the Westinghouse AP1000. TVA is part of the NuStart consortium at the Belafonte site in Scottsboro, Ala., where TVA is developing a combined operating license for the Westinghouse AP1000 reactor.

NuStart Energy is a company owned by nine power companies, created in 2004 for the dual purposes of: 1) obtaining a construction and operating license from the Nuclear Regulatory Commission, using the never before used, streamlined licensing process developed in 1992; and 2) completing the design engineering for the selected reactor technologies.

“First, what do you look for?” Bailey asks. “You look at costs or potential costs, because no one knew what the costs of a new plant were at the time. You look at the risk of the design in terms of how closely it resembles your experience, which means operating as well as maintenance, and whether there are any new features we may not be familiar with.

“So, we were looking at two different designs primarily. We looked at the ESBWR, which was the GE design reactor, the advanced boiling reactor. It was a good design. It had active safety systems like similar plants we have today, and it already had been built. So it was relatively low risk,” he says.

“But from a cost point of view, it would be a little bit higher because of all of the active safety systems and the extra concrete it would take to build it, he says. Furthermore, at the time there was an additional risk in that the rest of the utilities looking at new nuclear plants were not interested in building an ESBWR.

“This was before South Texas decided to go down that path. But at the time we would have been the only U.S. utility that was building that particular design, and therefore we didn’t want to be in a one-of-a-kind position again in the United States, although they had been built in Japan,” Bailey says.

He also saw there were two problems when comparing the economics of GE’s simplified boiling reactor to the Westinghouse design, and there seemed to be potential concerns on the risk side. “One was that [the GE design] introduced natural circulation cooling through the reactor. It doesn’t have forced reactor coolant circulating pumps. And therefore you are relying on just the differentials in temperature for the water to move through

Pages