Public Utilities Reports

PUR Guide 2012 Fully Updated Version

Available NOW!
PUR Guide

This comprehensive self-study certification course is designed to teach the novice or pro everything they need to understand and succeed in every phase of the public utilities business.

Order Now

Face-Off: The Renaissance of Nuclear Power

Nuclear power is on the verge of an extraordinary expansion.
Fortnightly Magazine - June 15 2003

their allowed 40 years, and by 2020, nuclear power would be no more than a failed industrial artifact.

Now, not only are nuclear plants operating lives being extended, their capacity ratings are being increased. Sophisticated analyses by plant owners and the NRC have demonstrated that large safety margins were incorporated into plant designs. Combined with improved instrumentation, new fuel designs, and other plant improvements, the NRC is allowing some nuclear plants to operate at higher power levels than those at which they were originally licensed.

Currently there are nearly 98,000 MW of nuclear generating capacity operating in the United States. Former NRC Chairman Richard A. Meserve, in recent remarks to the American Nuclear Society, said that during the last 30 years the NRC has approved 80 up-rates that added nearly 4,000 MW of generating capacity. Prospective power up-rates, when combined, may result in the effective addition of seven new nuclear power plants, amounting to nearly 7,000 MW. A recently completed analysis done for the Energy Information Administration (EIA) documented 1,060 MW of power up-rate applications before the NRC and 5,730 MW of additional up-rates likely to be submitted within the next seven years. 2 The National Energy Policy prepared under the direction of Vice President Dick Cheney estimates the nuclear up-rate potential at 12,000 MW. 3

In addition, nuclear reactors with operations or construction that were terminated are now being investigated to determine whether they should be repaired, completed, and restarted. The Tennessee Valley Authority, for example, is analyzing the benefits and costs of repairing and restarting Browns Ferry 1. Other partially constructed power plants that may be evaluated to determine whether it is technically practical and cost-effective to complete them include Watts Bar 2 in Tennessee, Atlantic Energy (Seabrook) 2 in New Hampshire, and Washington Public Power System 1.

Preliminary steps have been taken that may result in the construction of new nuclear reactors. The NRC has certified several new nuclear reactor designs, obviating the need for review of any technical issues about those designs that were resolved during the certification process. The NRC has certified three designs: General Electric's Advanced Boiling Water Reactor, Combustion Engineering's System 80+, and the Westinghouse AP600. A fourth design, Westinghouse's AP100, is currently being reviewed, and the NRC is engaged in pre-certification discussions with vendors representing five other designs, including gas reactor designs.

The NRC also is proceeding with early site permitting, or advanced approval of a potential site for a nuclear power plant, which may then be banked for future use. Issues resolved in the early site permit review are not reviewed again in the combined license process. The combined license process folds into one proceeding two separate reviews-construction permit and operating license-required of currently operating plants. Once the license is issued the plant may be constructed and proceed to operation after the NRC determines the as-built plant conforms to the approved license. These changes have reduced uncertainty and will result in regulatory decisions as early in the process as practical.

The Longer-Term Outlook-Environmental Benefits

One of nuclear energy's primary environmental (and economic) advantages