Smart grid advancements call for a new approach to restoration.
Gary Ockwell is the chief technology officer for Advanced Control Systems Inc. (formerly Efacec ACS) and an IEEE Power Engineering Society member.
In the not-too-distant past, utility distribution networks were managed by two non-competing technologies: outage management systems (OMS) and distribution SCADA (supervisory control and data acquisition). Today, this model is changing rapidly. Smart grid advancements have brought new combinations of advanced technologies, often working together in a real-time operation or a real-time network. In the smart grid, the technologies that are applied must work together dynamically; by their very nature, they must adapt to changes in the grid in a coordinated fashion. Changes to the network brought about as a result of one technology or system usually will have an effect on another system, but there remains only one real-time network state at any given time.
For example, two common smart grid automation technologies, feeder self-healing and power optimization, must be able to interact effectively. Many smart grid solutions with power quality improvement as their business objective are applying technologies such as loss minimization (LM), which performs capacitor switching to reduce losses. In other cases, conservation voltage reduction (CVR) is applied by reducing voltage through coordinated switching of regulators and load-tap-changing transformers. The coordinated combination of each for integrated volt-VAR control (IVVC) provides additional benefit.